





September 22, 1999

## Deep Space Acquisition, Tracking, and Pointing Technologies for Optical Communications

Shinhak Lee James W. Alexander Gerry G. Ortiz

Jet Propulsion Laboratory California Institute of Technology



### Outline



- Introduction/Background
- Pointing Requirements
- Technologies for Deep Space
- Key Technology Developments
- Summary



## Benefits and Challenges of Optical Communication



### Benefits

- High data rate
- Small, lightweight terminals
- Low power
- EMI insensitive

## <u>Challenges</u>

- Accurate beam pointing
- Background light sources
   >Sun, Moon, Planets
- Optical alignments
- Atmospheric attenuation



## Optical Comm Background



- JPL program started in 1979
- Includes spacecraft and ground technologies, systems, infusion planning, and system-level demonstrations
- Developed an Optical Comm. Demonstrator (OCD)
  - Laboratory-qualified functional model of a flight terminal
- Conducted a number of system-level demos
- Installing an Opt. Comm. Telescope Lab. (OCTL)
- JPL has responsibility for all NASA applications of optical comm



## Opt Comm Demonstrator Concept



- Uses single steering mirror and single tracking detector array to accomplish beacon acquisition, tracking, XMT/RCV co-alignment, and transmit-beam point-ahead
- Fiber-coupled laser transmitter removes heat from optics area

NASA-patented "minimal-complexity" architecture

TELESCOPE OPTICS

TRANSMIT SIGNAL
LINE-OF-SIGHT

BEACON MOTION

POINT AHEAD ANGLE

2-AXIS STEERING

TRANSMIT SIGNAL

TRANSMIT SIGNAL

TRANSMIT SIGNAL



### Lab-OCD Realization







## Past Opt. Comm. Demonstrations







### Past Opt. Comm. Demonstrations



### **GOLD Multiple-beam Transmission**

- Multiple beam uplink mitigates effects of atmospheric scintillation and beam wander
  - Beams are propagated through different atmospheric coherent cells
  - Each beam is delayed relative to the other by greater than laser's coherence length









### Principal of Operations





## Acquisition/Tracking/Pointing



## Acquisition/Tracking/Pointing





Fast Control Loop



# Sources of Tracking and Pointing Errors





NEA\* : Noise Equivalent Angle of tracking detector



## Beam Pointing Requirements



• Several  $\mu$ rad vs. 0.1 ~ 0.5 degrees (RF)



< Diagram illustrating the pointing requirements for the Europa orbiter mission>



## Lab OCD: Fine Tracking



Vibration suppression bandwidth ~ 50Hz in both axes





### Lab OCD: Centroiding Accuracy



• Centroiding accuracy ~ one-tenth of a pixel



Laser/reference Centroid

$$\sigma_{\rm x} = 1.10 \,\mu{\rm rad}$$

$$\sigma_v = 1.10 \, \mu rad$$

**Beacon Centroid** 

$$\sigma_{\rm x} = 1.12 \,\mu{\rm rad}$$

$$\sigma_{\rm v} = 0.84 \,\mu {\rm rad}$$

## ATP Technologies for Deep Space Missions







# Approaches for Accurate Tracking/Pointing



- S/C does not provide accurate receiver position
- Various sources (uplink laser, Earth, Moon, Star) may be used as beacon.
- Need advanced FPA (Focal Plane Array) with high QE (Quantum Efficiency) and large field of view
- Increase tracking bandwidth
- Decrease the transmission of S/C vibration
- Different ATP strategies are necessary to fully exploit various beacon sources



## Comparison of Various Tracking Approaches







## **Key Technology Developments**



- **Vibration Isolation** dominant source to mispointing, especially high frequency vibration
- Inertial Sensor increases tracking bandwidth
- Extended Source Image Acquisition Algorithm Earth, Moon images can be used as beacon source
- Star Tracking -stars are attractive beacon sources beyond 10AU
- Fast Steering Mirror (FSM) increases tracking bandwidth
- Focal Plane Array (FPA) determines pointing accuracy



## Technology Developments - Vibration Isolation



• Passive isolator - cost effective and efficient method to improve tracking capability by reducing transmission of high frequency S/C vibration





## Technology Developments - Inertial sensor



- S/C vibration causes random disturbance along telescope bore-sight
- Weak beacon signal -> slow FPA update -> poor tracking capability
- Inertial sensor can compensate slow FPA update by measuring S/C vibration between FPA updates
- **Key parameters** S/C position estimation error due to **sensor rms noise** & **calibration error**



Picture of QA-3000 accelerometer rms noise - 76µg calibration error - 0.5%



Position estimation error for rms noise of 100µg and sampling of 5kHz



Calibration error should be better than 2.5% for integration time of 0.1 sec. and error budget of 0.1 $\mu$ rad given Olympus S/C base motion PSD.



# Technology Developments - Image acquisition







Estimation of receiver location from extended source

Estimation of geometric center of extended source

Known offset from receiver to geo-center



Acquisition algorithms - sensitive to albedo variations and background noise

- Correlation method
- Edge detection method

### Albedo offset calibration -

Moon or star image can be used to calibrate due to its known albedo or light intensity distributions

Accuracy improvements - Multiple, sequential images with edge detection yielded 1/40th pixel accuracy in simulations



# Technology Developments - Star Tracking



### • Key parameters - signal level, star coverage

| Star Magnitude | Flux with no optical loss (400 – 900nm) | Flux with 25% system efficiency | Number of frames/sec. For accurate centroiding |
|----------------|-----------------------------------------|---------------------------------|------------------------------------------------|
| 7.5            | 1.0E6                                   | 250,000                         | 25 to 50                                       |
| 10.0           | 1.0E5                                   | 25,000                          | 5 to 10                                        |
| 11.0           | 4.0E4                                   | 10,000                          | 1 or 2                                         |

< Signal strength from stars of different magnitudes >



Number of days with less than 5 stars and a limiting magnitude of 11



Number of days with less than 2 stars within 0.6 degrees of Earth as seen from Jupiter



## Technology Developments -Fast Steering Mirror



FSM determines vibration rejection capability of tracking control system



### **General Scanning Tabs II mirror**

**Travel** +-25mrad **Resonance** 17/19Hz frequency

3dB @ 120Hz





LHD FO15 mirror

+-44mrad

205/270Hz



## Technology Developments - Focal Plane Array







## Summary



- Narrow laser transmit beam imposes many technical challenges in beam pointing
- S/C vibration is the dominant source to beam mispointing
- Bright beacon signal (Uplink laser, Earth, Moon, Stars) is necessary to maintain receiver position within few µrad under S/C vibration
- Scattered sun light is a major consideration for dim beacon signal
- Various ATP strategies are required to successfully address the need for deep space optical communication